IgG Autoantibody to Brain Beta Tubulin III Associated with Cytokine Cluster-II Discriminate Cerebral Malaria in Central India
نویسندگان
چکیده
BACKGROUND The main processes in the pathogenesis of cerebral malaria caused by Plasmodium falciparum involved sequestration of parasitized red blood cells and immunopathological responses. Among immune factors, IgG autoantibodies to brain antigens are increased in P. falciparum infected patients and correlate with disease severity in African children. Nevertheless, their role in the pathophysiology of cerebral malaria (CM) is not fully defined. We extended our analysis to an Indian population with genetic backgrounds and endemic and environmental status different from Africa to determine if these autoantibodies could be either a biomarker or a risk factor of developing CM. METHODS/PRINCIPAL FINDINGS We investigated the significance of these self-reactive antibodies in clinically well-defined groups of P. falciparum infected patients manifesting mild malaria (MM), severe non-cerebral malaria (SM), or cerebral malaria (CM) and in control subjects from Gondia, a malaria epidemic site in central India using quantitative immunoprinting and multivariate statistical analyses. A two-fold complete-linkage hierarchical clustering allows classifying the different patient groups and to distinguish the CM from the others on the basis of their profile of IgG reactivity to brain proteins defined by PANAMA Blot. We identified beta tubulin III (TBB3) as a novel discriminant brain antigen in the prevalence of CM. In addition, circulating IgG from CM patients highly react with recombinant TBB3. Overall, correspondence analyses based on singular value decomposition show a strong correlation between IgG anti-TBB3 and elevated concentration of cluster-II cytokine (IFNgamma, IL1beta, TNFalpha, TGFbeta) previously demonstrated to be a predictor of CM in the same population. CONCLUSIONS/SIGNIFICANCE Collectively, these findings validate the relationship between antibody response to brain induced by P. falciparum infection and plasma cytokine patterns with clinical outcome of malaria. They also provide significant insight into the immune mechanisms associated to CM by the identification of TBB3 as a new disease-specific marker and potential therapeutic target.
منابع مشابه
Clusters of cytokines determine malaria severity in Plasmodium falciparum-infected patients from endemic areas of Central India.
We investigated the role of interferon (IFN)- gamma , interleukin (IL)-1 beta , IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, tumor necrosis factor (TNF)- alpha , and transforming growth factor (TGF)- beta in clinically well-defined groups of Plasmodium falciparum-infected patients manifesting mild malaria (MM), severe noncerebral malaria (SM), or cerebral malaria (CM) and in control subjects from Gond...
متن کاملDifferential regulation of beta III and other tubulin genes during peripheral and central neuron development.
Mammalian peripheral and central neurons differ considerably in the composition and properties of their axonal cytoskeletons. Recent reports of the selective expression of a high molecular weight (HMW) tau protein in neurons with peripherally projecting axons have furthered the idea that the microtubules in central and peripheral neurons are disparate. In the present study, we examined the poss...
متن کاملGenetic diversity assessment in physic nut (Jatropha curcas L.)
Mahalanobis’ D-square (D2) statistics was applied to assess diversity in the 9 genotypes collectedof semi-arid region of India (7 genotypes from Gujarat and Rajasthan for normal toxic and two fromOrissa csmcri’s plantation of non toxic nature. These genotypes were grouped into five. Cluster I andIII had two genotypes, cluster II had three genotypes and cluster VI and V contributed as solitaryge...
متن کاملThe Effect of Enalapril on Brain Edema and Cytokine Production Following Transient Focal Cerebral Ischemia in Mice
Introduction: Cytokines production as one of the inflammatory pathways in CNS is responsible for most brain damages following ischemia. On the other hand, during inflammation and brain ischemia, most of the renin- angiotensin components (RAS) increase locally. While it is established that blockade of RAS especially AT1 receptors has a protective effect on ischemia, the interaction of cytokines ...
متن کاملCandesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats
Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...
متن کامل